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We investigate the linear stability of static coronal-loop models

undergoing thermal perturbations. The effect of conditions at the loop

base on the stability properties of the models is considered in detail. We

consider the question of appropriate boundary conditions at the loop base

and conclude that the most physical assumptions are that the temperature

and density (or pressure) perturbations vanish there. However, if the base

is taken to be sufficiently deep in the chromosphere, either several

chromospheric scale heights or several coronal loop lengths in depth, then

the effect of the boundary conditions on loop stability becomes negligible

so that all physically acceptable conditions are equally appropriate. For

example, one could as well assume that the velocity vanishes at the base.

We calculate the growth rates and eigenmodes of static models in which .

gravity is neglected and in which the coronal heating is a relatively

simple function, either constant per-unit mass or per-unit volume. We find

that all such models are unstable with a growth rate of the order of the

coronal cooling time. The physical implications of these results for the

solar corona and transition region are discussed. Accession For
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I. ILnrodion

For some time now static models of coronal loops (e.g., Rosner,

Tucker, and Vaiana 1978; Craig, McClymont, and Underwood 1978; Vesecky,

Antiochos, and Underwood 1979) have been widely used to interpret

observations of both solar and stellar coronae (e.g., Bonnett and Dupree

1980, Orrall 1981). The key assumption in these models is that the energy

input to the corona is constant in time so that a static solution to the

relevant equations is possible. However, even if a static solution is

mathematically possible, it will not be physically realizable unless this

solution is also stable to small amplitude perturbations. It is well known

that the coronal plasma is susceptible to a thermal instability due to the -

form of the dependence of radiative loss rate on temperature (Field 1965).

Therefore, in order to assess their degree of validity, it is necessary to

determine whether the static models are thermally stable or unstable.

The linear theory for the thermal stability of static coronal-loop

models has been investigated by a number of authors, but with differing

conclusions. In his original work, Antiochos (1979) concluded that the

static models were thermally unstable. Similar results were obtained by

Hood and Priest (1980). However, Chiuderi, Einaudi, and

Torricelli-Ciamponi (1981); Craig and McClymont (1981); and McClymont and

Craig (1981a,b,c) have found that the models are either stable or that the

growth rates for instability are too small to be physically significant.

The origin of this difference in the results of the two sets of authors is

in their treatment of the base of the loop models. Antiochos (1979) and

Hood and Priest (1980) have not included cool material, T K 105 K, in their

model, for which the form of radiative loss curve (e.g., Raymond, Cox, and

Smith 1976) favors linear stability (Field 1965). In addition, Antiochos

. .!



Page 3

has considered only perturbations with a vanishing first-order heat flux at

the base. Chiuderi, Einaudi and Torricelli-Ciamponi; and Craig and

McClymont argue that the growth rates for instability are very sensitive to

these assumptions so that the models can be effectively stabilized either

by including chromospheric material in the model (Craig and McClymont 1981)

or by changing the boundary conditions so that the temperature

perturbation, instead of the heat-flux perturbation, is assumed to vanish

at the base (Chiuderi, Einaudi, and Torricelli-Ciamponi 1981).

The reason for this apparently high sensitivity of the models to the

base conditions lies in one of the well-known properties of the static

models: the fact that the magnitude of the conduction and radiation terms

in the energy balance are approximately equal throughout the loop (Vesecky,

Antiochos, and Underwood 1978). As discussed by Field (1965), we expect -.-

thermal instability in coronal plasma whose structure is such that

radiation dominates. On the other hand, we expect stability if the

structure is conduction dominated, since conduction always acts to damp out

any temperature perturbation. Hence, the static models, whose structure is

such that these two terms are comparable, are perched near the boundary

separating stability from instability. Even seemingly minor changes on the

form of the base or of the boundary conditions at the base can be

sufficient to push the models to one side or the other of this boundary.

It is clear, therefore, that the proper treatment of the base is

critical for determining to what extent the models are either stable or

unstable. In the next section we discuss the question of the base

conditions in detail. In Sections III and IV we calculate growth rates and

eigernmodes for various static models and for various boundary conditions.

In the final section, V, we discuss the implications of our results.

, " -" ; -" .- . ' " - .,." J' '. _-_ .' . • .. .": '". . ." .. . " ". - ."" " ' ." ". -.," .". -,, .5 '"- .- " ,"" " ._.



As an aid to determining the appropriate boundary conditions, let us

first write down the perturbation equations for a one-dimensional loop

model. Assuming that all physical variables are of the form:

f(s,t) f 0 (s) + e f (1)

and assuming that the growth or damping time 1/v is slow compared to the

sound travel time so that the acceleration terms can be neglected in the

momentum equation, we obtain (Field 1965, Antiochos 1979):

vn1 +A s (AnVI) 0 (2)

T P1 n, mn 1  (3)ds ~ ng[

d ~1 d ..'3/2(vp + d p 5/2 PO (vn + V n +  (AFI) = _C (4)

l 1 ds O - no 1 ds"0 Ads
no

and

~ ~ T 1 (5)
P n T0O 0 0

where: A(s) is the cross-sectional area of the loop; gll (s) is the

component of gravity parallel to the loop; F1 is the perturbed heat flux,

which for the Spitzer (1962) conductivity is given explicitly by:

F1  10 -6 d (T05/2 T"

s TI) (6)

Xl constitutes the perturbed energy sources and sinks of the plasma. For

1

optically thin radiative losses and for a coronal heating function that

depends only on density and temperature or, equivalently, pressure and

temperature, Li is given explicitly by (Antiochos 1979):
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2dA
.C -2n n A(T -no 2-AT +-EP + -T (7)
1 01 00 dT 0  1 ap01 3T 0  1

where A(T) is the radiative loss coefficient (e.g., Cox and Tucker 1969)

and E(p,T) is the coronal heating rate. The equilibrium profiles are, of

course, given by (e.g., Vesecky, Antiochos, and Underwood 1979):

d
Spo = m no gll (8a)

-i0-6 d (AT05/2 dT 0 2
(A -nAT + £o

A ds 0 ds ) = O A(To) + e(POr 0 ) (8b)

Note that we have neglected in equations (2) - (8) effects due to

changes in ionization equilibrium or to optically thick radiation, both of

which are clearly important in the chromosphere. Hence, this model cannot

be used to determine the stability of the true solar chromosphere. We use

this model chromosphere only for investigating the effect of having

thermally stable material at the base of the corona and transition region.

Since our results will turn out to be insensitive to the detailed structure

of this region, we expect that our analysis will also be applicable to the -

solar chromosphere as long as it is thermally stable as well.

It is evident from the equations above that there are four independent

spatial derivatives in the problem, which implies that four boundary

conditions are required. This is to be expected since the full nonlinear

equations also require four spatial boundary conditions for a unique

solution (e.g., Richtmyer and Morton 1967). The usual situation is that at

end of the loop two boundary conditions are specified. One condition

generally relates to the thermal properties of the base; for example, with

respect to the perturbation the loop base may act as a thermal bath, in

which case the appropriate condition is that the temperature perturbation

vanishes there, Tib = 0; or it may act as a thermal insulator so that the

- . o,*". * •. - * " * *°,.- . . •



perturbation heat flux vanishes there, Flb 0 0. The other condition

generally relates to the inertial properties of the base; for example, it

may act as a rigid wall with respect to the perturbation so that the

velocity vanishes, Vlb- 0, or a "free surface," so that the pressure

perturbation, P lb 0. Most of the discussion in the literature has

concerned these four conditions, and the discussion in this paper will also

concentrate on these four. Let us emphasize, however, that there are an

infinite number of other possible boundary conditions and that, lacking

some physical justification, there is no reason to single out the four

above. A DrioQi, all conditions are equally acceptable.

There has also been a considerable discussion in the literature on the

distinction between symmetric and antisymmetric modes. However, this

distinction is spurious. It is due only to the special class of models

considered by the previous authors (Antiochos 1979; Hood and Priest 1980;

Chiuderi, Einaudi, and Torricelli-Ciamponi 1981; Craig and McClymont 1981).

In their models gravity is neglected, and the loop area and the coronal

heating do not have any spatial variation. Under these simplifications,

the static equations are autonomous, and the equilibrium models are

symmetric about the loop apex. Hence, the solutions to the first-order

equations, i.e., the normal modes of the loop, are either purely symmetric

or antisymmetric about the apex. These results will clearly not hold for a

realistic equilibrium model that has no special symmetry properties. For

such a model each choice of four boundary conditions will, in general,

determine a complete and distinct set of eigenvalues and eigenfunctions.

Within each set all the modes are equally valid. Hence, in this paper we

will avoid any discussion in terms of symmetric or antisymmetric modes; and

since the most important mode from the viewpoint of thermal instability is

the lowest order one, we will concentrate on the fundamental.



The question remains as to what choice of boundary conditions best

represents the physical situation at the base of a solar loop. Ideally,

one would like conditions at the loop base not to affect the stability

properties of the corona and transition region. The standard procedure for

achieving this is to place the base sufficiently far that over the time

scale of any instability no effects can propagate to the base. However,

the sound travel time in the corona, chromosphere and even photosphere is

very rapid compared to typical thermal time scales, such as the coronal

cooling time. On this time scale, material at the loop base is always in

contact with the coronal plasma, even if the base is assumed to be in the

photosphere. Note that our neglect of the acceleration terms in the force

equation is tantamount to assuming an infinite sound speed and,

consequently, a negligible propagation time scale throughout the loop. For

such a model it is not obvious, at least to us, whether the position of the

base can ever be chosen so that conditions there have an insignificant

effect on the behavior of the corona. We show below that, fortunately,

even with the rapid sound speed, the base has a negligible influence on the

coronal stability if it is placed sufficiently deep.

In order to determine the physically valid boundary conditions to

impose at the loop base, we need a definite model for this base region. As

a simple model let us assume that the chromosphere below a coronal loop is

isothermal at temperature Tb , is in hydrostatic equilibrium, and is

strictly stable. In addition, we assume there is no real end point to a

solar loop, so this model base rrpgion extends below the corona and

transition region to arbitrarily large depths, i. e., either to many

chromospheric scale heights or to depths large compared to the coronal loop

length. Finally, let us neglect the curvature of the loop for this

analysis and set g (s) to be a constant.

. . . . . . . . . . . . . . . . . .



The form of the boundary conditions follows simply from the

requirement that, since we are interested in coronal disturbances, the

perturbations should vanish or at least remain finite in the chromosphere.

Combining equations (3) and (5), an expression can be obtained for the

pressure perturbation P in terms of the temperature perturbation T1
S

P (S) _P (0) T s() --
1 1 1 ds

p0 (S) P0() fT0H(T 0
0

where H (T 0 is the gravitation~al scale height at temperature T0

H(T) =- kT (10)Mg

and s =0 is some reference point in the loop (the top is convenient). We

are defining s to increase downwards. It is evident from (9) that in order

for P (s) to remain finite with increasing depth in the chromosphere, i.e.,1

s .- ,the temperature perturbation must vanish with depth T -> 0. In

fact, Tmust decay quite rapidly with depth, on the size scale of the

chromospheric scale height H(T b) or less, because the equilibrium pressure

P0 grows exponentially on this size scale. Note that we are excluding the

possibility of modes that oscillate indefinitely with depth. We are

interested primarily in the lowest order mode; and as we will see below,

this usually has no zero crossings.

We conclude, therefore, that the proper thermal boundary condition is

that T lb=0. This result is to be expected physically. It follows from

the fact that any perturbation of the temperature also implies a

perturbation of the gravitational scale height. If the temperature

disturbance extends more than a scale height or so deep into the

atmosphere, a very large pressure disturbance must result due to the change

in scale height. Hence, the only physically acceptable temperature

perturbations are those that vanish on the order of a scale height or less.



Now, to determine the inertial boundary condition, we integrate the

continuity equation (2) to obtain an expression for the particle flux n0 V1

in terms of the density perturbation nI:
S

n (s)V (s) n 0o(0) Vl(O )  n I ds (11)

As in the situation above, it is evident that in order for noV 1  to remain

finite as s -> c, n1 must vanish with depth. Again, this is to be expected

physically. If the density disturbance extends over a large depth, then

the change in the total number of particles in this region must be large,

and consequently a large flux of particles into or out of the region must

result. It is evident from (11) that in the chromosphere nI must vanish

faster than LC Is, where Lis the size scale of the coronal portion of the

loop, i.e., the region where we expect a finite nI . Note that the density

perturbation may extend to much greater depths than the temperature one.

We found above that 1 must vanish at least as fast as exp(-s/Hb), where

is the gravitational scale height in the chromosphere. For typical solar

loops Hb << L C.

We conclude that the proper boundary conditions at the loop base are

that Tlb = 0 and nlb = 0. At any finite depth this is equivalent to the

set Tlb 0 and Plb 0. Although the temperature, density, and pressure

perturbations vanish, the mass flux does not. Using (2) and (3), the

perturbed mass flux can be related to the pressure perturbation:

n = (Pn)S) - p (0)) (12)

Since the pressure perturbation vanishes with depth, the mass flux will in

general tend to some finite constant, corresponding to a steady-state flow

in the chromosphere and below. This is to be expected on physical grounds

as well. We do not expect the temperature and density structure deep in



the chromosphere or photosphere to be affected by a disturbance in the

corona. However, if as in our problem, the time scale of the disturbance

is long compared to the sound travel time, then a steady flow must occur at

large depths to support any coronal flows. Of course, the velocity itself,

V1. vanishes with depth since the density no increases; however, the mass

flux noV 1 stays constant. This is exactly the situation that we found for

the case of evaporative cooling of coronal loops (Antiochos and Sturrock

1978). There again, the coronal evolution occurred on time scales long

compared to the sound travel time, and it was found that a steady flow was

set up at the loop base due to evaporative motions in the corona. This is

also the situation for the photosphere at the base of an open magnetic

field region such as in a coronal hole. In these regions coronal heating

results in a steady solar wind flow. The presence of this flow has no

observable effect on photospheric temperatures and pressures, but it

clearly implies the existence of a mass flux in the photosphere equal to

the coronal mass flux.

Let us now examine the effect of using different boundary conditions

at the loop base, in particular, the rigid-wall one. We wish to find out

how the coronal perturbation depends on the base conditions, for example,

how P (0) depends on nobVlb. From (12) it is evident that specifying the

base mass flux is equivalent to specifying the base pressure perturbation,

but the relation between P (0) and Plb is given by (9):
1 lb L

'0 (0) ) T1  ds

1 (0) ) P lb +P (0J T () (13)1 ob P0 0o0  
O l( O

0

Equation (13) is the key result. The effect on the coronal perturbation

P (0) of assuming a non-vanishing Plb is given by the first term on the

right-hand side of (13). This term is of order P (0)/P for a temperature
0 Oh

perturbation that vanishes rapidly in the chromosphere so that the pressure



C 10 and m = 3. This value for m is convenient numerically since for

m 3 the depth of the base region turns out to be proportional to

1/ ,; hence, the range of chromospheric depths covered by the range used for

-5
S is correspondingly large, (L - Lc)/L c ranges from - 10 to - 10. Again,

we note that there is almost no variation in \ irrespective of the depth

of the chromosphere.

We have investigated the effect of the form of the coronal heating on

stability by performing a series of calculations as in Figure 3 for the

case of uniform heating per unit volume, Y = 0. The results are

essentially identical to those shown in Figure 3. This agrees with our

previous calculations (Antiochos 1979) in which we investigated a wide

range of values for Y and found no significant effect on the growth rate.

We have also looked for any possible effect due to the form of the

chromos.heric heating by varying the exponent m defined in (43). This

parameter determines the degree of stability of the chromosphere, i.e., the

magnitude of the quantity (To-F/ T0 ) (cf., Field 1965). The chromospheric

magnitude of this quantity is small in our models compared to its coronal

value except for the case m = 1. Note that for m = 1 the chromospheric

depth L - L varies only as ln(I/) so that even with the smallest value of
U4

-15
6 usable numerically, ~ 10 , the chromospheric depth is not large,

(L - L)/Lc  .05. The results for the cases with m = 1 are identical to

those shown in Figure 3 for the case m = 3. Again, there is no significant

dependence of the growth rate on either the base temperature or the

chromospheric depth. We conclude that the instability does not depend on

the particular form, (42), that we assumed for the chromospheric heating.

4 --
This result is to be expected. For temperatures K 5 x 10 K, the - -

quantity T is strictly negative in all our models; hence, this region

cannot contribute to any instability. As we will see below, the unstable



obtained by solving (14) for a series of static models with different base

properties. These static models all have very similar coronal properties.

The apex temperature T (0) was chosen in each case to be 106 K and the

coronal heating given by y = 1 and Q = 10- 1 2 ergs/sec/particle, equation

(41). Given the coronal temperature and heating rate, then as is well

known (e.g., Vesecky, Antiochos, and Underwood 1979), the coronal density

and coronal loop length are constrained by the scaling laws. They turn out

to be no(O) = 3.2 x 109 cm and Lc = 5.2 x 10 cm. Conditions at the

base, however, are very insensitive to the coronal conditions, so that we

can vary the base temperature and the amount of base material with almost

no change in coronal parameters.

In our model the base temperature is given by Tb, and the depth of the

chromosphere is determined primarily by the constant 6, equation (43).

Hence, there are actually two distinct sets of models in Figure 3. In one

set all the models have a value of 6 = 1, which implies that there is an

insignificant amount of material at the base. These models correspond to

the usual static-loop models, as in Vesecky, Antiochos, and Underwood

(1979). For such models we investigated the effect of the base temperature

on stability by varying Tb from 2 x 105 K to 10 K. In Figure 3 only the

cases down to Tb 3 x 104 K are shown, but no change was observed in using

4T down to 104. As is clear from the figure, the value of the base

temperature has essentially no effect on loop stability. The growth rate

z is of order unity irrespective of whether T is chosen to occur at

chromospheric or transition-region temperatures.

The second set of models in Figure 3 are those with a fixed base
4

temperature Tb = 3 x 10 K, but with varying amounts of base material at

this temperature. The value of,' was varied from 1 to 5 x 10

The other parameters in the energy input rate (equation (42)) were fixed,



such as the VAL models (Vernazza, Avrett and Loesser 1981), all indicate

the presence of a flat temperature "plateau" at T - 2 x 104 K with a very

abrupt rise at higher temperatures. Within the context of the static

model, and neglecting possible kinetic effects (Shoub 1983), the only way

to obtain the observed very sharp structure in the temperature profile is

to have a correspondingly sharp structure in the energy input rate. This

is one reason why the static models are generally assumed to have a base

above 2 x 10 4 K. The particular form, (41) and (42) is chosen simply for

convenience. It permits us to investigate the effects of adding a varying

amount of cool, radiatively stable material to the loop base.

b) GrwthRates

(i) Free Surface

We have calculated the eigenvalues A for a wide range of static

models. In particular, we have determined the dependence of the stability

on the following properties of the model: the coronal temperature, the

base temperature, the depth of the chromosphere, the form for the heating

and, of course, the boundary conditions. The main result of this analysis

is that for the boundary conditions Tlb = O, 1 b = 0, AU the models were

unstable with a growth time approximately equal to the coronal cooling

time. The growth rate was found to be completely insensitive to the loop

temperature either in the corona or base, to the amount of chromospheric

material or to the form of the chromospheric heating. Hence, we conclude

that the instability is a true physical one and will occur in solar loops

that satisfy our basic assumptions, i.e., spatial variations in the loop

area and heating, and the effects of gravity can be neglected.

Figure 3 shows the growth rate 'YT of the lowest free-surface mode



T < 5 x 104 K. In order for the model to have a large chromosphere, the

temperature gradients and, hence, the heat flux must be small at these

temperatures. The radiation losses in the chromosphere cannot be balanced

by conduction from above (e.g., Athay 1981); thus for a static model these

losses must be balanced by the ener-y input (e.g., Craig, Robb and Rollo

1982).

Therefore, we uze the following form for the energy input:

E = Qny tanh(x(T))+ n2A(1 - tanh(X(T))) , (41)

where

X(T) = C (T/Tb -1 + 6) (42)

and Q,y, C , m and 6 are constants. Equations (41) and (42) imply that for

6<< 1:

QnY  for T > T b .__

-> - (43)

n 2 A, for T =T b

i.e., the energy input rate tends to Qny for temperatures larger than the

base temperatures and tends to the radiative loss rate at the base

temperature. The values 0 and 1 for y correspond to constant coronal

heating per unit volume and per unit mass, respectively. The depth of

material at the base temperature is determined by the value of 6; it

becomes arbitrarily large for arbitrarily small 6.

The form that we assume for the energy input, (41) and (42) may appear

highly unphysical because it undegoes an abrupt although continuous change

near T Tb However, such a sharp structure in the energy input rate is

implied by the observations. Empirical models of the upper chromosphere,



chromosphere. This makes it impossible to use a uniform grid for finite

differencing the independent variable x. However, we cannot use the

equilibrium temperature T as the independent variable since the

temperature gradient vanishes at the loop apex and base. Instead, we

define a new independent variable r:

/T (0) \2/ Tb\T

dr \ T - To(O) T0 dx (40)

and use a uniform grid in r. It is evident from (30) that the effect of

transforming to r is to increase the number of grid points at transition

2
region temperatures (TO(O) < T 0 < Tb) by a factor of order (TO (0)/T )

We found that this was sufficient to yield an accurate solution.

a) ForM 9f Heating and Cooli

There are two functions in the problem that have yet to be specified:

the radiative loss coefficient, A(T), and the energy input rate c(n,T).

For the former we use a smooth analytic approximation to the curve derived

by Raymond, Cox and Smith (1976). Figure 2 shows this curve along with our

approximation to it. The stability properties of the models are not

sensitive to the exact form of A(T) as long as this form is such that it

5
implies radiative instability above - 10 K and stability below.

Since the mechanism for coronal heating is not known, the form of the

energy input e is essentially arbitrary. In our previous work we found

that the stability properties are insensitive to the exact form for c, at

least, for the case where this form is a power-law dependence on n and T.

Hence, we simply assume that in the corona and transition region the energy

input either per unit volume or per particle is constant. At lower

temperatures a different form for the energy input must be used in order to

have a significant mass of material at "chromospheric" temperature,

* " "' " ". i. t, -v " '*:""" -. . .. ... ... " " " .



models the growth time 1/vf is very short, of order the cooling time in the

transition region rather than that in the corona (Antiochos 1979). We find

that for these cases the rigid-wall growth rate vr is slightly larger than

Vf. However, for models in which some cool stable material occurs at the

base, the rigid-wall boundary conditions always result in smaller growth

rates.

IV. NriclReut

The mathematical problem that must be solved is now clearly defined.

For the free-surface conditions, (14) reduces to a standard Sturm-Liouville

problem, as in Antiochos (1979), which we solve in exactly the same manner

as before.

For the rigid-wall conditions, the inhomogeneous problem must be

solved subject to the constraint (24a). Note that this is not a standard

Sturm-Liouville problem; hence, none of the well-known theorems (e.g.,

Morse and Feshbach 1953) on the behavior of the eigenfunctions and

eigenvalues need apply. There are two parameters, X and n, that must be

determined; therefore, we do not use a "shooting" technique as in the

homogeneous case to obtain solutions. First, we note that since n will, in

general, be non-zero for any finite-length loop, we can eliminate it by

defining a new dependent variable (Ii/n). Now (14) and (24a) define a

nonlinear boundary-value problem for (p/n) and the unknown parameter \.

This is solved by standard techniques: Newton-Raphson iteration and

finite-difference solution of the linearized equations. Convergence was

rapid, < 20 iterations for all the cases we investigated.

One numerical complication is the extreme variation in temperature

scale height between the corona, the transition region, and the
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order mode, has no zero crossings and its normalization is irrelevant, the

sign of 6v is determined primarily by the sign of the terms in the brackets

in the rightmost integral; however, this factor does not have a unique

sign. The first term v is always positive and for models of interest has

magnitude - 1/T; consequently, it enhances instability. The sum of the

second and third term is proportional to (-c/P ) for the case where the
0

heating c is constant per particle, and (-2e/Pd for c constant per unit

volume. Hence, the contribution from the last two terms is negative, and

since in the static model the energy input and the radiative losses are

roughly equal in the corona (e.g., Vesecky, Antiochos, and Underwood 1979),

c/P 0 is also of order I/T. It is, therefore, not clear which of the two

contributions will dominate; however, it turns out that the negative

contribution is usually larger than the positive one so that the rigid wall

has a net stabilizing effect.

This is to be expected physically. A rigid wall acts to inhibit flows

and, consequently, any density disturbance. For optically thin radiation

at coronal temperatures, both the temperature dependence and the density

dependence of the losses is such as to promote instability (Field 1965).

By suppressing the density effect, a rigid wall tends to weaken the

instability. It is interesting to note that this need not always be the

case. Sometimes a rigid wall can actually enhance instability. In

particular, if vf is very large and dominates the other terms in (39), we

would expect 6v to be positive. This situation does occur for models in

which the base is placed high up in the transition region and the

temperature boundary condition is assumed to be dT /ds = 0. For such

lb



the particular solution:

2 5/14 (Vr Tb - 5/2)

r 5 b (Vr Tb + 1 (35)

If, as expected, v " 0(I/r ), then for T b -> 0
r b

2 5/14
Lr 5 r Yb (36)

We will see below that (35) also agrees with exact solution of (14).

These results verify our claim that nr decays as L /L. We have that
L /L r c

C
-5/14 -5/14

1r f1r y  dx + f r y dx (37)

0 Lc/L
Substituting the asymptotic form (35), or (36), into the second integral

yields (26) to within a factor of order unity. -

The effect on the growth rate of imposing a rigid-wall constraint can

also be estimated. Using the equations for C and Cr' and their boundary
f r

conditions, the following expression is obtained:1 1

Xf f f (x) dx f g(x) dx

6 X 0
r f 1 (38)

-'---'L dx - fC f(x) dx

If L c/L << 1, then to lowest order in Lc/L, Equation (38) can be writtenCp

as:

-5/14 1
Cfdx jdx

6vV= V 0 Y5/14 O(vf + '-)dx (39)r. f 1 2 ff y f - 0--
Cf dx0

0
Each of the integrals in (39) is of order Lc/L; hence, 6v is also of this

order.

Depending on the sign of 6v, the rigid-wall can have a stabilizing (6v

negative) or destabilizing (6v positive) influence. Since Cf, the lowest

. . . .



The longest length scale for the decay is obtained in the limit T/Tb -> 0.

This length, Lc (TblTo (0) 1

" b , is typically small compared to physical

size scales either in the corona or chromosphere. We show below that the

form predicted above is obtained from exact solution of (14).

We now consider the rigid-wall case. With C as the dependent
r

variable, Equation (14) becomes:

d x (Y x + Q(x) C + r = ( f(x) + g(x)) (30)
dr r r r r

where the subscript "r" is used to indicate rigid-wall quantities. The

functions f and g are given by:

2 5/14
f(x) = y (31)

and

5/14 4 dy +"oaL(2 '

g(x) =-y 7 dx2 32)

Following the arguments above, in the base region, Equation (30) reduces

to: 2

1 2 r r r -r

2 (33)
- Vb5/14 ()2

nr -b" Vr T + T/T.)

where, again, due to the form of the radiative losses, we assume that.

(-/T - i/b (34)

The general solution to (33) consists of a linear combination of the

homogeneous and particular solutions. However, the homogeneous solution is

equivalent to the free-surface solution, and we found above that this

decays exponentially. Hence, the solution at large depths is dominated by

.. . . .
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where the brackets indicate the average coronal value. Hence, for large

depths, , decays as LC/L. This is the same behavior that we found before,

except that now since there is no gravity, the only scale in the problem is

the coronal loop length, so that this length rather than the gravitational

scale height determines the decay scale for the effects of the wall.

b) A. Forms

In order to check whether C will, in fact, decrease rapidly in the

chromosphere, let us examine the asymptotic forms for in this region as

predicted by equation (14). We first consider the free-surface case.

Since T is approximately constant in the chromosphere, Equation (14)

reduces to:

22
b f + a 0  - f T f 0 (27)dx 2 f ( 0Ci.L

where the subscript "f" is used to refer to the free-surface variables.

Assuming that the radiative loss function has a simple power-law dependence

on T, and that the power is positive so that the chromosphere is

radiatively stable, then we expect that:

)

where Tb is the radiative cooling time at the base. Note that our

definition for X has a sign change from that used by Field (1965) and that

the negative sign is required for stability. Assuming that the

free-surface growth rate, \)f , is of order the coronal cooling rate 1/T,

Equations (27) and (28) yield the following asymptotic form for 4

slZ
Tb e7/4. .

-1/2
where L b (I + T/Tb) (29)

. . . . . . . . |
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The boundary conditions must now be specified. Assuming the "natural"

ones, nib 2 Tlb = 0 leads to:

=0 and p b = 0 (23)

at each end of the loop. Note that we have used the fact that the

equilibrium heat flux vanishes at the base in order to derive

Equation (23). If one assumes instead the rigid-wall conditions

Vlb = Tlb = 0, this leads to the constraint (Antiochos 1979):
1J 11 dx = 0 (24a)

and the conditions:

5 /14
Pb + Yb 5 = 0 (24b)

With this formulation it is difficult to compare the effects of the two

sets of boundary conditions since one set leads to homogeneous conditions

on p, (23), whereas the other does not. In order to facilitate the

comparison, let us for the moment reformulate the problem in terms of a new

5/14
variable defined as C = + . y n, so that the boundary conditions (24b)

will become homogeneous. Hence, the problem reduces to solving an equation

for C and n of the form (14) (only the form of G(x) changes) and with

boundary conditions:

for free surface, b = 0, and n = 0;
b 1

for rigid wall, b O, and r, = f Cy-5/14 dx. (25)

0

The relation between the two sets of conditions is now transparent. We

note that if, as expected, C decreases sufficiently rapidly in the

chromosphere, then (24) implies that in the limit of large chromospheric

depths, i.e., Lc/L ->0,

-5/14
-(L/ y > (26)

1

... . . . . . .... . . , + - -. .. ..



Under the special assumptions above, the perturbation equations (2) -

(6) can be simplified to a form essentially equivalent to the one we used

previously (Antiochos 1979):

d d
-x (y I) + Q(x) +XII = nl G(x) , (14)

where we have defined dimensionless variables:

x s/L , (15)

L is the loop half-length,

y(x) (T0/T0 (0))7/2, (16)

5/14

v ds 1

P1
and Ti = constant. (18)

0

The eigenvalue X is defined as:

(L/Lc)2
- LI ", (19)

where T is given by the coronal cooling time scale

5 06  L2 7/

10 6 (T (0))7/2 (20)2 0 ( 0

The functions Q(x) and G(x) are given by:

1 5dv

14 2 - 0 (21a)

5/141 PG(x) =-y 3/5 + a 0O 0 + PO (21b) 

where a is a constant of the dimensions:

• 106 L2 (T0 (0))-7/2 (22)

.. °



wall where the pressure P lbjumps back up to its coronal value. The

physical reason for this is straightforward. Flows in the corona will

cause material either to pile up or to evacuate from the wall. Hence,

d there must exist a pressure gradient near the wall of the same order as the

coronal gradient in order to decelerate or accelerate the flows. However,

over most of the chromosphere the flows are in a steady state, and the

pressure perturbation is negligible.

It is clear from these results that the appropriate boundary condition

to assume at the loop base is that P lb =0. This condition results

naturally in the chromosphere, irrespective of what is assumed at the base

as long as the base is placed sufficiently deep. If the base is placed

within several scale heights of the top of the chromosphere, then it is the

9= boundary condition that is appropriate; the use of rigid-wall

conditions, or any others, is likely to lead to incorrect conclusions. if

the base is placed many scale heights deep, then the particular boundary

condition used becomes irrelevant.

a) Perturbation &a.ons

In this paper we calculate growth rates and eigenfunctions only for

the simplified problem discussed by previous authors; we neglect gravity

and any spatial variation in the loop area or heating function. We discuss

the effects of gravity and the area variation in a subsequent paper

(Antiochos and An 1985). For purposes of comparison, we calculate the

growth rates and modes for several sets of boundary conditions, although as

we discussed above, the physically appropriate ones are T =0 and
lb

n lb 0.



perturbation there is of order the coronal one (i.e., P ICs) does not

diverge exponentially in the chromosphere). For a base that is several

scale heights deep, P 0)/P Obis negligible; therefore, the form of the

coronal perturbation is insensitive to the boundary condition on Vbor,

equivalently, V
lb

The situation is clarified by Figure 1, where for a given T 1 s) we

plot the resulting form of P1I(s) and noV 1 s) for both rigid-wall Vl = 0

and free-surface P lb=0 boundary conditions. Since this is for

illustrative purposes only, we have taken an extremely simple equilibrium

loop model in which we neglect the effects of gravity in the corona and

assume that the transition region is vanishingly thin. The corona is,

therefore, isothermal and isobaric and is defined to extend from s =0 to

C

equilibrium and with a temperature 100 times lower. The base of the loop

model is taken to occur 10 chromospheric scale heights deep,

L = C 10 H b- For simplicity, the temperature perturbation, T 1/T 0, is

assumed to be constant in the corona and to decay exponentially in the

chromosphere on a size scale of H b/10.

The forms for P (s) and n V (s) obtained from (9) and (11) are plotted1 0 1

in Figure la and 1b, respectively. We have taken the velocity to vanish at

the top, V 1(0) = 0, which would be the case for the lowest order mode of a

symmetric loop model. On the scale of this figure, the modes with P lb= 0

and those with V = 0 are indistinguishable except within a few scale
lb

heights of the base. In this boundary region the rigid wall mass flux

exhibits a sudden decrease to zero, and P 1 exhibits a sudden increase back

up to its coronal value, i.e., P lb = P 1(0). Note that the magnitude of

this jump does not change with position of the base. No matter how deep

the rigid wall is placed, there will occur a small boundary layer at the



modes have a vanishingly small amplitude in this region compared to coronal

amplitudes.

(ii) Rigid Wall

We have solved Equation (14) for the rigid-wall conditions (24) and

for the exact wide range of equilibrium models used with the free-surface

conditions. Some of the results are shown in Figure 3. The growth rate of

the lowest rigid-wall mode is plotted for comparison with the corresponding

free-surface mode. The rigid-wall rate is seen to approach the

free-surface one as the chromospheric depth becomes large, Lt/L << 1; the

ratio of the growth rates is near unity, %)r/Vf = .85 for the deepest model

in the figure, Lc/L = .07. These numerical results confirm the analytic

arguments above that for large depths the rigid-wall condition is

equivalent to the free-surface one.

We find that the rigid-wall growth rates are also insensitive to the

coronal temperature, the base temperature or the form of the heating.

However, Figure 3 shows that they do depend on the depth of the base

region. For models with Lc > L/2 , the growth rate is negative, indicating

stability. Note that this value for /L actually implies a large

chromospheric region. Since the base density is approximately two orders

of magnitude greater than the coronal density, the bulk of the loop plasma

is in the base for Lc/L .5. Note also that the damping rate is almost

-2constant for models with 6 > 10 . This result emphasizes the unphysical

nature of the rigid-wall conditions and the danger in using them. If one

assumes the rigid-wall condition and then considers models with increasing

chromospheric depths, it first appears that static loops are stable and

that the stability is insensitive to base conditions. One would naturally

conclude that the models are physically stable. But as the base depth is

. . . . . .. .=| . . . .. • • - _



increased, the models suddenly become unstable. Somehow the addition of

too much stable material at the base destabilizes the coronal This is

clearly an unphysical result and is due to using improper assumptions at

the onset.

The same type of behavior is found when boundary conditions other than

T - 0 and n 0 are used. For example, Craig and McClymont (1981) find
lb lb

that the conditions dT lb/ds = 0 and Plb = 0 lead to abrupt changes in the

growth rate at very small chromospheric depths. We have also examined

these conditions and a variety of others defined by the vanishing of a

linear combination of Tlb and Flb or Plb and V 1. Depending on the

particular equilibrium model, the boundary conditions assumed can result in

growth rates either larger or smaller than the free surface one; however,

in all cases the rates tended to the free-surface result for large

chromospheric depths. In all but the free-surface case the growth rates

exhibited an abrupt change at some range of chromospheric depth; hence, the

conditions T = n = 0 are the oQnly ones that are generally valid.
lb lb

c) Eorial Modes

Along with the eigenvalues X we have also calculated the

eigenfunctions p for all the equilibrium models considered. Two

representative cases are shown in Figures 4a and 4b. In Figure 4a we show

both the free-surface T I/T0 and the rigid-wall mode, TI/nTo, for the

equilibrium model of Figure 3 with the deepest chromosphere (L /L = .07C

-6corresponding to 6 = 5 x 10-). In Figure 4b the results for the model

with 6 = 10 - , (L /L = .97), are shown.
C

We first discuss the results for the deepest model, Fig. 4a. In order

to resolve their structure in the transition region, the modes are plotted

against a nonlinear distance scale. From the loop apex, s = 0, to a point

. . .. . . . . .. . .. . . . . . . . . ... 
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two coronal depths down, s 2Lc, the equilibrium temperature T is used as0

the independent variable. From this depth down to the loop base, s = L,

the distance itself is used. Of course, all the significant structure in

the eigenmodes occurs well above the point s = 2L . The region below thisC

depth is included in the figure only to point out that the numerical

calculations verify the analytic asymptotic forms obtained above. Using

(29) and taking T/Tb = 0, we find that the decay scale k for the
-3

free-surface mode is equal to 2.16 x 10 L . Hence, the free-surface mode
C

should have essentially zero amplitude in the deep region. The numerical

results agree with this. We find that the amplitude of T1 /T drops below

computer accuracy well before s = 2L . On the other hand, the amplitude of

the rigid-wall mode, TI /IT 0 , does not vanish. Instead, it has a constant

value of 0.4 over most of the chromosphere and vanishes only near the base

on the size scale Z. This behavior is also in agreement with the analytic

results. In the chromosphere, T1 In TO = / y1; therefore, from (36)

we expect the mode to approach the value 2/5, except very near the base,

where it must vanish due to the boundary conditions.

It can be seen from Fig. 4a that the modes have significant amplitude

only in the corona and transition region. The free-surface mode has been

normalized to equal the rigid-wall value at the apex. Note that the

rigid-wall quantity T1 /j T0 does not have an aribtrary normalization

factor since this quantity is the ratio of the temperature-to-pressure

perturbations. Its magnitude has physical significance. Our results

indicate that the pressure perturbation is in the same sense but smaller

than the temperature perturbation. As the depth of the chromospheric

region increases, L c/L -> 0, we find that the coronal magnitude of Ti/PT 0

increases as (L/L)- . This confirms our previous result that n should

decrease as L C/L for a fixed temperature perturbation.

...............................



On the scale of Fig. 4a the two modes are almost identical in the

corona and transition region. Only near the base is there a significant

deviation; and as the depth of the base region is increased, the two modes

become indistinguishable. The modes exhibit a stong peak near 5 x 104 K.

At approximately this temperature the radiative losses change from being a

destabilizing to a stabilizing effect, so that below this temperature the

modes decay very rapidly on the scale of Z~. It is important to emphasize

*that although the modes peak strongly in the transition region, the

instability is not a local one. The modes have finite amplitude throughout

the corona, and the growth rates correspond to the coronal cooling time

rather than the much faster cooling time in the transition region. Hence,

the instability is a global one involving the complete loop except for the

chromosphere.

The situation is somewhat different for the model with a shallower

base, Fig. 4b. The free-surface mode is very similar to that of the model.

with the deeper base. Indeed, this mode is insensitive to just about

everything; hence, the curve shown in Fig. 4a (or 4b) can be considered the

* universal form.

However, the rigid-wall mode is obviously very different from that of

Fig. 4a. The most striking difference is that the mode has a zero crossing

at the base of the transition region and Is negative in the chromosphere.

This is in agreement with the analytic results. We note from (35) that as

N) decreases from a large positive quantity, the asymptotic amplitude

*becomes negative. As v decreases further to a large negative quantity,

the amplitude becomes positive again. The numerical results agree with the

-4
behavior. For models with large depths, 6 t 10 , the amplitude in the

-3
chromosphere is positive. For models with intermediate depths, 6-10

it is negative. It becomes positive again for small depths, 6 > 1072. For

.. . . . . .. .6 .



Pmodels without a very deep base, the chromospheric form of the rigid-wall

mode is clearly quite sensitive to the exact position of the wall. The

* free-surface mode, on the other hand, shows no change for all values of 6

that we investigated.

In the corona the rigid-wall mode has the same general shape as that

in Fig. 4a, but the amplitude is an order of magnitude smaller. This means

I that for a given amplitude temperature perturbation, the effect of the

decrease in the base depth is an increase in the coronal pressure

perturbation by an order of magnitude. In fact, the pressure perturbation

A actually has a larger coronal amplitude than the temperature perturbation.

We note from Fig. 4b that the ratio of the temperature to pressure

amplitude is less than unity for temperatures down to -8 x 105 K. This

S region encompasses about 70 percent of the coronal portion of the loop.

Since from (5)

T n

1 10

our results imply that over most of the croona the temperature and density

perturbations must be in the same sense. A decrease (an increase) in the

Itemperature is accompanied by a decrease (an increase)in the density as

well. Since a decrease in the temperature implies an increase in the

radiative loss rate (for T > 10~ K), whereas a decrease in the density

S implies a decrease in the losses, the perturbations oppose each other as

far as instability is concerned. The net result is stability, v < 0 for

the model in Fig. 4lb. For models with a deeper base region, as in Fig. 4a,

S the temperature perturbation is much larger than the pressure perturbation,

and, consequently, the density perturbation takes the opposite sense. Both

- the temperature and density disturbances act to promote instability, and

S the model of Fig. 41a is, indeed, unstable, v > 0. We conclude that the



stability of the rigid-wall models such as Fig. 4b is a boundary-condition

effect. It is due solely to the assumption of a rigid-wall at a parular

depth.

V. Discussio

There are two key results of this paper. The first is that the

appropriate boundary conditions to assume at the loop base are

Tib = nlb = 0. For models with a sufficiently deep base

(Lb >> min (Hb, Lc)), all boundary conditions can be used; however, the set

above is the only one that is appropriate for models that do not satisfy

this condition. Indeed, we find it surprising just how universally valid

these boundary conditions appear to be. Even for models with little or .no

chromosphere, they yield the correct growth rate and form of the eigenmode

for the instability. Contrary to the conclusions of several authors

(Habbal and Rosner 1979; Chiuderi, Einaudi, and Torricelli-Ciamponi

1981; Craig and McClymont 1981; and McClymont and Craig 1981a,b,c), the

mere presence of radiatively stable material at the loop base does not

stabilize the static models. If incorrect boundary conditions are used,

then the base can act either to stabilize or, as we showed above, to

destabilize the static models. However, if the proper conditions are used,

then the amount of base material has no effect on the stability.

This is a convenient result from a numerical point of view. It is

often quite difficult to handle numerical models with extremely deep base

regions (e.g., Craig, Robb, and Rollo 1982). Our results indicate that

models with very shallow bases can yield correct results if the correct

boundary conditions are used.

The second main result of this paper is that under our assumptions,



static models of coronal loops are thermally unstable. The growth rate of

the instablity is of the order the coronal cooling time (20). The basic

assumptions that we made for the equlibrium models were that gravity and

all spatial variations in the loop area or heating rate are negligible.

These are the most commonly used assumptions in calculating static models.

An important question is: how sensitive are our results to these -

assumptions? MoClymont and Craig (1981a,b,c) have considered the question

of spatial variations in the heating rate. They find that these can act

either to enhance or to damp instability. Lacking a model for the coronal

heating process, nothing definitive can be stated on this Issue; hence, we

will not consider it further. We will discuss the effects of gravity and

the area variation in a forthcoming appear. In general, the area variation

acts to enhance the instability; however, we do not expect it to enhance

the growth rates to values much beyond the ones here, since these are

already of the order of the coronal cooling rate. Gravity, on the other

hand, acts to damp the instability (e.g., Wragg and Priest 1982); hence,

our results are certain to apply only for loops in which gravity can be

neglected.

We can identify at least two possible physical situations in the solar

corona where the effects of gravity should be small so that our results

clearly apply. One is the case of loops sufficiently low lying, heights

t 1000 kin, so that the loop height is smaller than any gravitational scale

height in the loop. Another is the case of magnetic field lines that are

concave in the corona, so that near the loop center the force of gravity is

directed toward the center rather than away from it, as in the usual case.

This is the type of magnetic geometry believed to be responsible for

quiescent prominences. Our results imply that these two types of

structures are naturally unstable without any special requirements on the
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coronal heating process. We believe that the thermal instability discussed

in this paper is responsible for the cool material that is often observed

to occur in the corona.

Of course, in order to prove this statement, the nonlinear development

of instability must be calculated. Clearly, the instability must not

saturate at a low amplitude if it is to produce observational effects in

the corona. Only the linear growth rates were considered in this

paper; the nonlinear evaluation must be determined by numerical simulation.

Numerical simulations of coronal loops have been performed by several

authors (e.g., Craig, Robb, and Rollo 1982; Peres et gl. 1982; Oran,

Mariska, and Boris 1982). These simulations have not exhibited any

significant evidence for thermal instability; however, to our knowledge no

one has considered models in which the effects of gravity are negligible

and the correct boundary conditions are employed at the loop base. Our

results indicate that the instability should be present in such models. We

intend to investigate the nonlinear stability of coronal loops in a future

work.
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Figure CaL±ins

Figure 1 Plots of free-surface and rigid-wall pressure perturbation
S

(Figure la) and mass flux perturbation (Figure Ib) for the

highly simplified model described in the text. The

free-surface results are indicated by solid curves and the
S

rigid-wall one by broken curves; the two types of modes are

distinguishable only near the base, s = L.

Figure 2 The radiative loss coefficient of Raymond, Cox and Smith (1976)

(broken line) and our analytic fit to it (solid line). The units

in the figure are arbitrary.

S

Figure 3 The free-surface (solid curve) and rigid-wall (broken curve)

growth rates for a series of static models with varying base

temperatures and/or varying base depths.

Figure 4a Plot of lowest free-surface temperature perturbation (T /TO )1 0

and rigid-wall perturbation (T P /ToP I ) for the equilibrium model1 0 0 1

with 6 = 5 x 10-6 and a length L = 14.2 L . The free-surface

mode is indicated by a solid curve, and the rigid-wall one by a

broken curve; they are indistinguishable in the corona and

transition region. The scale of the abscissa is log (T ) for

0 e s < 2L , and s/L for 2L < sL.
C C

-3
Figure 4b Same as in Figure 4a but for the equlibrium model with 5 10

and with an abscissa of log (T0) for 0 . s/L .94 and

log (s/L) Vor .94 < s/L < 1. Note that the rigid-wall

amplitude is negative in theregion s/L > .94.
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